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Localised solutions of a non-linear spinor field 
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Received 4 January 1977, in final form 4 April 1977 

Abstract. The existence and structure of localised solutions for a non-linear spinor field are 
studied. 

1. Introduction 

Recently the solutions of classical non-linear field equations have received considerable 
attention as a means to obtain information on the structure of the corresponding 
quantum field theories (Gervais and Neveu 1976). The main idea is to look for classical 
solutions to non-linear field equations and construct quantum states around them. In 
particular those solutions correspond to the expectation values of quantum fields on 
suitable coherent states (Hepp 1974). The JWKB method, the Feynman path integral 
method, etc are based on the properties of the classical solutions. Moreover classical 
field theory is, at least, the order-zero approximation to quantum field theory. For 
these reasons it is interesting to study the properties of the classical solutions of 
non-linear field equations. 

The Dirac field with a positive (&I,!I)~ self-interaction, introduced by Weyl (1950), 
has been studied numerically by Soler (1970) and Raiiada era1 (1974)who were looking 
for localised solutions which could be used as representations of extended particles, like 
nucleons. In 8 2 we study some properties of those solutions. In particular we prove 
that they have an exponential decay at infinity. This property of the solutions is used to 
recognise them when they are computed numerically. Also, we prove the non- 
existence of localised solutions when A’ > 1 (A is the representative parameter in the 
model). Thus, in order to find localised solutions, we only have to consider the values of 
A, such that A2 s 1. 

In 8 3 we prove the existence of a one-parameter family of localised solutions for a 
non-linear scalar field obtained as a Klein-Gordon limit for the above non-linear spinor 
field. 

2. Classical Dirac field with a ($a,%)* self-coupling 

t On leave from Departamento de Fisica Teorica, Universidad de Zaragoza, Zaragoza, Spain. 
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Our notation will be 

where uK are the Pauli matrices and A is a positive constant. 
The field equations are 

i~'aWt+b-M$+2h(&4)~=O (3 ) 

and they admit the following stationary solutions which are separable in spherical 
coordinates: 

The following convenient transformations in functions and variables are made: 

p =Mr, A = w / M ,  p2  = 1 - A'. 

The field equations (3) are now 

(6a ) 

(66) 

F 
P 

F + 2-+ (1-A)G - (G2 -F2)G = 0 

GI+ (1 + A)F- ( G ~  - F')F = o 
the localised solutions of (6) are solutions F(lxI), G(lx1) which are functions of class 
C'(R3) which are bounded. They belong to the Sobolev space H'(R3) (the space of L2 
functions whose generalised first-order derivatives belong to L ') such that 

and F(0)  = 0. It is possible to compute them numerically, but to prove their existence 
and to characterise all of them are open questions. It is difficult to apply the variational 
methods of Berger (1972) and Ambrosetti and Rabinowitz (1973) because: (i) the 
localised solutions of (6) are the critical points of an even functional I(F, G) subject to a 
constraint which is not positive definite and such that I(F, G) = 0 if F = G # 0 (lemma 
2(a)); (ii) the localised solution of (6) satisfies equations (8) which correspond to two 
coupled Klein-Gordon fields, with two self-couplings of fourth and sixth order, and in 
this case it is not possible to apply Ljusternik's theorems since the functional sR3 u6 d3x 
is not completely continuous in H ' ( R ~ ) .  

Lemma 1. If A' > 1 there is no localised solution for equations (6). 

Proof. Applying the operator iyaay to (3) we get an equation like the Klein-Gordon 
equation: 

(7) A 4  +(w2-M2)$  +4hM($$)9 -4A2($4)2$ +2iA [r"aa($$)]$ = 0. 
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This transformation is right because we work with radial functions in H’(R3) and their 
Lp-norms (2 s p s 6 )  are bounded by their norm in H ’ ( R 3 )  (Nirenberg 1959). 

Using the transformations ( 5 )  and equations (6 )  we have the radial equations: 

(8a 1 

(86)  

2 2  F + -F - 7 F - p 2F + 2( G’ - F2)F - ( G2 - F2)’F + ( 4AG’ - E) F = 0 
P P  P 

2 4F3 
G” + -GI - p2G + 2( G2 - F2)G - (G2 - F2)2G + 4AF2G - - = 0. 

P P 

We can regard ( s a )  as the equation 

A~+(-p ’+p(p>)u  = O  (9 )  

where U = F(p)  cos 0 

p ( p )  = 2(G2-  F2)-  (G2-F2)’ + ( 4 A G 2 - E )  
P 

for the localised solutions limp-,m p p ( p ) =  0, thus applying the result of Kat0 (1959) (9)  
has only the trivial localised solution U = O( 3 F = 0) if - p2 > 0, i.e. A’ > 1. In the same 
way equation (8b)  with F = 0 and A’ > 1 has only the trivial localised solution G = 0. 

So we conclude that if A’ > 1 there are no localised solutions for the equations (6). 

Lemma 2. The localised solutions of (6 )  satisfy the following properties. 

subject to the constraint 
(a) They are the critical points of the functional I(F, G )  = J? (G2 - F2)2p2 dp 

( b )  They satisfy the integral conditions 

Jom (G’ + F2)p d p  = 

m m Io ( ~ ~ - ~ ~ ) ~ ~ ~ d p =  I [ (A-1 )G2+( l+A)F2]p2dp  
0 

$G4(0)-i(l-A)G’(0)= J 2(F2/p)[ ( l  +A)+(F2-  G2)1 dp. ( 1 0 ~ )  
0 

(c) They have an exponential decay at infinity. 

Proof. ( a )  If (e, P )  is a critical point of the variational problem, then 

P F’ + 2-+ (1 - A ) 8  - 2 R G ( C 2  - P’) = 0 

e’+ ( 1  + A)P- 2kF(G2 - F 2 ) =  0 
P 

where k must be a positive constant in order to satisfy the constraint. Thus (F, G )  = 
(2k)”’(P, e) satisfies (6). As we can see if F =  G # 0 then I(F, G )  = 0 and the 
constraint is not positive definite. 
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(b) Equation (10u)is obtained by integrating directly in equations (6). This relation 
implies the non-existence of localised solutions when A = 0 and gives us a measure of 
the size of the localised solution: 

j: (F2 + G2)p2 dp 1 
(’)= (F2+ G2)p dp A’ 

3- 

To obtain ( lob)  we use an argument of Rosen (1969). Equations (6) are associated 
with a variational principle, in particular their corresponding Lagrangian is 

1 2FG 1 
P 2  

A(F2 + G2)- (G2 - F’) + FG’ - G F  - -+ -(G2 - F2)2 p2 dp. 

Then we have the global condition 

Invoking equations (6), we eliminate the derivatives in F and G, getting relation 
( lob)  which implies the non-existence of localised solutions if A S  - 1. 

Relation (1Oc) is obtained from the following phase-space analysis: the differential 
equations (6) describe a non-conservative, one-dimensional motion since p (‘time’) 
appears explicitly. The energy for the corresponding conservative motion (defined by 
equations (6) after the l / p  term has been deleted) is 

K = f ( l  +A)F2-a( l -A)G2+f (F2-G2)2  

and for the non-conservative motion which corresponds to our actual problem we have 

d K  2F2 
-= --[(I +A)+(F2- G2)] 
dP P 

since for a localised solution F(0) = 0, G(0) # 0 and F(m) = G(m) = 0 we thus obtain 
(lOc) by integrating dK/dp. 

The integral conditions (10) can be used in order to prove the non-existence of 
localised solutions, to test the accuracy of the numerical localised solutions, and to find 
variational solutions. 

(c) The Green function gob, s) for the operator 

2 
P 

L , G = G ~ + - G ~ - P ~ G  

can be written 

Thus the solution G(p) of equation (8b) can be estimated: 
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where 
FZ 

T(s )  = - 2 G ( G 2  - F2)+ ( G z  - F2)2G - 4( AFG - -) F 
S 

since sinh(pp)/p increases and eWBP/p decreases as p increases, we obtain 

since G and F belong to H'(W3), by the Holder and Sobolev inequalities 

J o m s z ~ ~ ( s ) ~ d s = D o < m  

(in particular 

Jo" F p z  dp 

1 "  1 "  
s 2 Jo F' d~ +i Jo ~~p~ dp 

1 "  

where Do depends on the norms of G and F i n  H'(R3).  So we get 

co 

F 2 p 2  dp +2  Jo FZp2 dp 2llFllL1m) 

a s p + m .  (12) 
D 

lGCo)ls& 

In the same way we obtain for F a similar a priori bound. The Green function 
gl@, s) for the operator 

2 2  
P P  

L'F= F ~ P  + - F ~  - T ~ - p 2 ~  

can be written 

and as before we get 

where 
F2 m 

Dl=jo  s2~-2F(G2-F2)+(G2-FZ)2F-4G(AFG--)~ S ds 

which depends on the norms of G and F in H'(R3). 
In equation (9) (the same as (8a))  with the a priori bounds (12)-(13) we can regard 

U@) as an eigenvector associated with the eigenvalue -PZ, where p @ ) =  O(l/p4) as 
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p + cx), and is bounded as p + 0. Hence, for some 8, F(p)  = O(e-6p) as p +CO. This 
follows from standard estimates from the spectral theory of second-order operators 
(Glazman 1965). In the same way we can regard G(p) (equation (86)) as the solution of 
the equation 

AG-q(p)G-P'G=t(p) 

where 

4 (p) = - 2(G2 - F2)  + ( G2 - F2)' - 4 W 2  

r(p) = 4F3/p. 

Then G(p) is the sum of two functions with exponential decay as p +Co. The first one 
corresponds to the homogeneous equation for which the above argument also 
holds.The other is a solution for the complete equation (12) and its exponential decay 
follows since t(p> = ~ ( e - ~ ' / p ) .  

3. Non-linear Klein-Gordon equation 

Considering the upper spinor components in equation (7) and with a suitable change in 
dimensions we obtain the Klein-Gordon limit 

- Aq5 + (M2 - w ')q5 - CY (4 *4)4 + p (q5 *q5)'q5 = 0 (14) 

where q5 = e-'"'q5 (x) and (Y = 4AMZ, p = 4A 2M2. That corresponds to a complex scalar 
field with two self-couplings of fourth and sixth order, and their spherically symmetric 
localised solutions have been studied numerically by Anderson (197 1). 

Making the transformations 
~ 2 - @ 2  1/4 

2 -1/2 
q5=(-) U, r = p ( ~ ' - w ' ) ' / ~ ,  E =CY[p(M'-w )] 

CL 

we obtain 

- A u + u - E u ~ + u ' = ~ .  (15) 
A necessary condition for the existence of localised solutions is E > (y)', Also, using the 
argument of Rosen (1969), we obtain for those solutions 

u4 d3p = 4 J U' d3p. 

It is possible to prove the existence of a solution of (15) for some values of E .  This 
result is a consequence of the following theorem (Berger and Berger 1968). 

Theorem. Suppose: (i)fl(u)+ 00 as llu11+ 00; gradfl(u) is monotonic and continuous in 
the Hilbert space H and (grad fl(u), (U) # 0 for U # 0. Suppose also that: (ii) grad f2(u) 
is a completely continuous operator such that grad f~(0) = 0; and (iii) (grad f 2 ( u ) ,  U )  > 0 
for u # 0. Then for every c > 0 there exists a uc E H with F(uc)  = c and 

grad f1(uc) = 77 grad f A u c )  (16) 
where 7 is a real number, that is a one-parameter family of solutions uc of (16), each 
solution being a critical point of f~(u) on the manifold axc ={U Ifl(u) = c } .  
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To demonstrate the applicability of the above theorem we set: 

H = H : ( w ~ ) = ~ ~ ( / ~ ~ ) E L ~ ( w ~ ) I - - E L ~ ( w ” ) ,  au i = 1,2 ,  3 )  
axi 

[U, U]H = (uu +Vu . Vu)d3r J., 
f l (u)= IR3 [t(lVul2+u2)+3u6] d’r 

f i ( u ) = $  J u4 d’r 
R3 

(i) Clearlyfl(u)+m as ( I U I I = C ~ R ~ ( U ~ + + V U ~ ’ ) ~ ’ ~ ) ~ ’ ’ ~ ~ ~  and (gradfl(u), u ) # O  for 
U # 0. grad fl(u) is monotone: 

(gradfl(u)-gradfl(u), - U )  

= J @(U -U). V(u - u ) + ( u  - u ) ~  + u6+  u 6 -  u5u  - v 5 u )  d’r 30 

because, using the Holder inequality and the fact that U ,  b > 0 and 0 < a  < 1, aab”-’ 6 
Lya +(1 -a)b,  we obtain 

1 (u5u + u 5 u )  d’r 6 (u6+  u 6 )  d’r. 

Also grad fl(u) is continuous: 

113 

u6 d’r GK6(  j(IVul2+ U’) d’r) 

where K6 is a constant independent of U. 

continuous (Berger 1972). 
(ii) grad fi(0) = 0 and (grad f2(u), U)> 0 for U # 0 and grad f 2 ( u )  is completely 

Thus the hypotheses of the theorem are satisfied. The equation associated with the 
variational problem is (15) with 7 = E and this has a one-parameter uc family of weak 
solutions. By the classical regularity theory of critical points (due to Hilbert and 
Tonelli) each U, is smooth enough to satisfy (15) and the point-wise sense (Berger 
1972). 

The theorem does not tell us how to compute the values q( = E). 
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